
Technisch-Naturwissenschaftliche
Fakultät

Extracting Traceability Information from
Products' Feature Sets and Code for Reverse

Engineering Software Product Lines

BACHELORARBEIT
(Projektpraktikum)

zur Erlangung des akademischen Grades

Bachelor of Science

im Bachelorstudium

INFORMATIK

Eingereicht von:
Lukas Linsbauer, 0956251

Angefertigt am:
Institute for Systems Engineering and Automation

Beurteilung:
Univ.-Prof. Dr. Alexander Egyed M. Sc.

Mitwirkung:
Dr. Roberto Lopez Herrejon M. Sc.

Linz, Juli 2012

Abstract

Quite often companies develop a range of similar software products, tailored to individual
customers, by reusing code and other artifacts from related projects that share some
functionality instead of writing them from scratch. Inadvertently, they do create the
potential capability of reverse engineering a Software Product Line. However, tapping
into the benefits offered by this development paradigm poses several challenges. One of
them is tracing the features to the code that implements them across the different product
variants. In this paper, we present an algorithm to address this problem and evaluate it
at the level of class methods and fields. We applied our approach to three case studies
of different sizes and problem domains. Out of the more than 22,000 elements at this
granularity level only 0.7% could not be traced due to code being shared by disjunctive
features.

Contents

1 Introduction 4

1.1 Software Product Line (SPL) . 4
1.2 Goal . 5

2 Background and Example 7

2.1 Example: Draw Product Line (DPL) . 7
2.2 Feature Model . 7
2.3 Feature List . 8
2.4 Source Code . 9
2.5 Feature Algebra . 9

3 Traceability Mining Algorithm 13

3.1 Basic Insight . 13
3.2 From Features to Modules . 14
3.3 Dealing with Code Removal . 15

3.3.1 Shared and Unique Code for Derivatives 16
3.3.2 Negative Features . 17

3.4 Algorithm Pseudo-Code . 18

4 Experimental Setting 21

4.1 Workflow . 21
4.1.1 Step 1: Product Line and Feature Model. 22
4.1.2 Step 2: Templates and Generator. 22
4.1.3 Step 3: Parser. 22
4.1.4 Step 4: Traceability Mining. 23
4.1.5 Step 5: Validator. 23

4.2 Implementation . 23
4.2.1 Data Structures . 23
4.2.2 Framework . 25

5 Evaluation 28

5.1 Evaluation Criteria . 28
5.2 Case Study: Video On Demand (VOD) . 29

2

CONTENTS

5.3 Case Study: ArgoUML-SPL . 30
5.4 Case Study: MobileMedia (MM) . 31
5.5 Analysis . 31

6 Related Work 35

7 Conclusions and Future Work 37

3

Chapter 1

Introduction

This first chapter provides an introduction to Software Product Lines (SPLs) in general as
the very foundation of this work, followed by its motiviation and the goal we are aiming
at and what this thesis contributes to reaching it.

1.1 Software Product Line (SPL)

Product lines have existed for a very long time in traditional manufactoring. A typical
example for a product line would be the manufactoring process of a car of a certain type.
All cars of a certain model are similar, but most of them are not identical. One instance of
this type of car may have a different color, the other a different engine or an extra feature
like air conditioning. Each of these are features of a car that can be composed in various
ways. Some features are optional and represent the variable part of the car while others
may be mandatory and are the same for every instance of this type of car. Every type of
car is then composed of a set of assets that represent certain features instead of developing
each car from scratch depending on a customer’s needs.

Now this concept is also applied in the discipline of software engineering in the form
of strategic, planned reuse. A family of related software products is built using a set of
assets, each implementing certain features. These assets are designed and developed for
reuse. This way the products can be built to address certain market segments or types of
customers without building every software product from scratch. Clements and Northrop
define an SPL as follows:

Definition 1. A Software Product Line (SPL) is a set of software-intensive systems that
share a common, managed set of features satisfying the specific needs of a particular market
segment or mission and that are developed from a common set of core assets in a prescribed
way [Clements and Northrop, 2002].

According to van d. Linden et al. [van d. Linden et al., 2007] software product line
engineering comprises two life-cycles: domain-engineering and application engineering.
Domain engineering results in the common assets that together form the product line’s

4

1.2. GOAL

platform. It also ensures that the platform has the variability that is needed to support the
desired scope of products. Application engineering develops the products in the product
line. It results in the delivered products. These two life-cycles consist of sub-processes
that interact with each other. The domain engineering sub-processes result in common
assets that are used in their application engineering counterparts to create products. In
return the application engineering sub-processes generate feedback that is used in domain
engineering to improve the common assets.

According to Clements and Northrop [Clements and Northrop, 2002] on the other hand
there are three essential product line activities: management, core asset development and
product development, where core asset development corresponds to domain engineering
and product development corresponds to application engineering [Northrop, 2008].

A product line strategy in software engineering can lead to dramatic improvements
in cost, quality, productivity and time-to-market [Clements and Northrop, 2002, van d.
Linden et al., 2007]. However, applying the concept of product lines in software engineering
efficiently and being able to handle the complexity of large product lines at all requires
proper techniques and tool support.

In addition, there exist a lot of legacy software products that may be similar but
were not designed as a product line from the start. In such cases it may be worth it to
refactor these products into a software product line in order to be able to benefit from the
advantages. And this is where our work starts.

1.2 Goal

Companies usually develop similar software products without designing them as SPLs.
However, these software products will most likely have artifacts in common. For example,
almost every application needs some kind of login or authentication. As already mentioned,
software product lines offer various benefits, like increased reusability, fewer defects and
reduced time to market among others [Clements and Northrop, 2002, van d. Linden et al.,
2007]. To reverse engineer an SPL from product variants and take advantage of these
benefits several challenges have to be addressed. First, a common feature model has to be
derived from product variants [Haslinger et al., 2011], and it is also crucial to know where
in the code each feature is actually implemented.

In this thesis, we present an algorithm to trace features of product variants to the
source code that implements them at the level of class methods and fields. We describe
the algorithm based on feature algebra as presented in [Liu et al., 2006], holding on to the
assumption of a unique trace for every code (i.e. one piece of code traces to exactly one
module) while allowing the removal of code.

The algorithm is evaluated on three case studies. Of more than 22K code elements
totalled by our case studies at the granularity of class methods and fields, more than 99%
could be traced to features such that the original products could be reconstructed using
the extracted traceability information. The code pieces that could not be traced either

5

CHAPTER 1. INTRODUCTION

did not have a unique trace because they belonged to multiple disjunctive features or, in
very few cases, there were mistakes in the source code of some product variants such that
there was code left over from other variants that did not actually belong there anymore.

6

Chapter 2

Background and Example

The driving goal of our work is to provide support to help derive an SPL from programs
that were not originally conceived to be part of a common product line, but they may share
a history. For that we need to trace the programs’ features in their source code in order
to be able to compose different variants of programs. We start off with a set of programs.
For each program we initially know the features that it implements and its source code.
By comparing these programs with each other we derive associations between parts of the
source code and features. In our approach we assume that products which have common
features also have common code, and that this common code implements exactly these
common features. In terms of code granularity we focus on classes, methods and fields.
We perform a basic experiment at this level of granularity to see if the approach works.

2.1 Example: Draw Product Line (DPL)

The example we use to illustrate our approach consists of four product variants. We
will refer to the SPL formed with these four variants as the Draw Product Line (DPL).
DPL variants are simple drawing programs with different capabilities - depending on the
selected features of the product - such as drawing lines and rectangles, wipe the drawing
area clean, or select a color to draw with. Their feature combinations and code are
shown in this chapter along with the necessary background to understand the underlying
theoretical model of our work.

2.2 Feature Model

A Feature Model (FM) describes the features of a SPL and their relations to each other.
It is a tree structure with the nodes being features. The root node of a feature model
is always included in all products. A feature can only be part of a product if its parent
feature is also part of it. A feature can be mandatory (denoted with filled circles at the
child end of an edge) or optional (denoted with empty circle at the child end of an edge). A
mandatory feature is part of a product whenever its parent feature is. An optional feature

7

CHAPTER 2. BACKGROUND AND EXAMPLE

can but need not be part of a product if its parent is. Features can be grouped into an
inclusive-or relation (filled arc) where one or more features of the group can be selected
or an exclusive-or relation (empty arc) where exactly one feature must be selected. In
addition features can depend on each other across the whole tree in the so called cross-tree
constraints. Typically these are requires relations where selecting a feature A also requires
the selection of another feature B (denoted with doted single-arrow lines), and excludes
relations where selecting a feature A prohibits the selection of another feature B (denoted
with doted double-arrow lines). Feature models without cross-tree constraints are called
basic feature models [Haslinger et al., 2011, Kang et al., 1990].

The full feature model to the DPL is given in Figure 2.1. At least one of the features
LINE and RECT has to be selected. Features WIPE and COLOR are optional. In case of the
feature COLOR being selected at least one of the colors has to be selected as well.

DPL

ColorWipeLine

DPL

Rect

Green BlueBlackRed

Figure 2.1: DPL Feature Model

Every product of this SPL has the feature DPL as it is the root of the feature model.
For simplicity the root feature was left out in the example products, otherwise the module
expressions would have become large and the examples complex. The feature DPL would
be associated with code that is present for every product within this SPL. We also omit
the features for the different colors and for drawing a rectangle for simplicity.

2.3 Feature List

A feature list FL is a set containing all the features in a feature model. In our example, we
assume a feature list FL = {LINE, WIPE, COLOR}. Feature LINE is mandatory and features
WIPE and COLOR are optional. A feature set of a product is a 2-tuple (sel, sel) where sel
is the set of features that are selected in the product and sel is the set of features that
are not selected. The products’ feature sets can also be described in form of a feature set
table as shown in Table 2.1, there is a row for each product and a column for every feature
in the SPL. If a product provides a feature there is a mark in the corresponding field. In
other words, each row represents the feature set for the corresponding product [Haslinger
et al., 2011].

8

2.4. SOURCE CODE

Products Wipe Line Color Feature Sets
Product 1 X X ({W, L}, {C})
Product 2 X ({L}, {W, C})
Product 3 X X ({L, C}, {W})
Product 4 X X X ({W, L, C}, {})

Table 2.1: Feature Set Table

2.4 Source Code

The code snippets for the example products we will use are shown in Code Listing 1. For
each of the four products the classes Line and Canvas are shown. Product1 is from Line
1 to Line 13 and Product2 from Line 15 to Line 26. The class Line looks the same for
both. But in the class Canvas there is no method wipe for Product2 as the feature WIPE

is not part of it. Product3 is from Line 28 to 40. The constructor of class Line at Line 32
now also contains a parameter for the color. The old constructor was removed. And the
class Canvas contains a method for setting the color at Line 38. Product4 is from Line
42 to Line 55 and is the same as Product3 with the only difference that in class Canvas

at Line 53 the method wipe is present again. This code gives us a number of unique code
pieces to work with. They are listed in Figure 2.2.

c1 Point Line.startPoint
c2 Point Line.endPoint
c3 void Line.paint(Graphics g)
c4 Line.Line(Point start)
c5 void Line.setEnd(Point end)
c6 Line.Line(Color color, Point start)
c7 List < Line > Canvas.lines
c8 void Canvas.wipe()
c9 void Canvas.setColor(String colorString)

Figure 2.2: Unique Code Pieces

2.5 Feature Algebra

The products can also be described via feature algebra as presented in the work of Feature
Oriented Software Development (FOSD) [Liu et al., 2006]. We use this algebraic notation
to describe our traceability mining algorithm more precisely. The idea is that a product
can be composed by adding features. Features are written in uppercase letters. For
example Product1 is composed by extending feature LINE with feature WIPE, written as
WIPE(LINE). This is called a feature expression.

Each feature consists of modules, which represent its implementation. The base module
[Liu et al., 2006] of a feature contains the code that is always present in a product that
has this feature, independent of any other features that may or may not be present. A
base module is denoted in lowercase letters. For example, the base module of feature LINE

9

CHAPTER 2. BACKGROUND AND EXAMPLE

1 /* Product 1 (WIPE , LINE) */

2 class Line {

3 Point startPoint , endPoint;

4 void paint(Graphics g) {...}

5 Line(Point start) {...}

6 void setEnd(Point end) {...}

7 ...

8 }

9 class Canvas {

10 List <Line > lines = new LinkedList <Line >();

11 void wipe() {...}

12 ...

13 }

14
15 /* Product 2 (LINE) */

16 class Line {

17 Point startPoint , endPoint;

18 void paint(Graphics g) {...}

19 Line(Point start) {...}

20 void setEnd(Point end) {...}

21 ...

22 }

23 class Canvas {

24 List <Line > lines = new LinkedList <Line >();

25 ...

26 }

27
28 /* Product 3 (COLOR , LINE) */

29 class Line {

30 Point startPoint , endPoint;

31 void paint(Graphics g) {...}

32 Line(Color color , Point start) {...}

33 void setEnd(Point end) {...}

34 ...

35 }

36 class Canvas {

37 List <Line > lines = new LinkedList <Line >();

38 void setColor(String colorString) {...}

39 ...

40 }

41
42 /* Product 4 (COLOR , WIPE , LINE) */

43 class Line {

44 Point startPoint , endPoint;

45 void paint(Graphics g) {...}

46 Line(Color color , Point start) {...}

47 void setEnd(Point end) {...}

48 ...

49 }

50 class Canvas {

51 List <Line > lines = new LinkedList <Line >();

52 void setColor(String colorString) {...}

53 void wipe() {...}

54 ...

55 }

Code Listing 1: DPL product snippets

10

2.5. FEATURE ALGEBRA

is denoted as line. It contains the code of class Line that is always there if the feature
LINE is selected. This means the constructor is not part of the base module, because it
changes depending on other selected features. All products have the feature LINE, but not
all have the same constructor in class Line.

The feature WIPE in Product1 also consists of another module δline/δWIPE which is
called a derivative module [Liu et al., 2006]. It contains the changes the feature WIPE

makes to the module line. In case of Product1 there is no source code associated with
that module and there are no changes. A change can be the addition of code as well as
the alteration or removal of code. This interpretation is different to the one presented
in [Liu et al., 2006] in that we allow the removal of code as will be explained in Section
3.3. Derivative modules basically model the interaction of features, how features influence
each other. For example, only the combination of a number of specific features makes
a certain piece of code necessary (or respectively unnecessary). There are also higher
order derivatives like δ2color/δLINEδWIPE • in Product4. It represents the changes that
features LINE and WIPE make to module color. So the principle is the same, there are
just more features involved. This example models the interaction of three features.

There are two operations on modules that allow us to compose them [Liu et al., 2006].
The first operation is + which is a binary operation that unifies the code of two base
modules. The code of two base modules is disjoint. The second operation is • which
either composes two derivative modules into a composite derivative module or weaves the
changes of a derivative module into a base module yielding a so called woven base module.

With these two operations the relationship between a feature expression and the corre-
sponding module expression that implements it can be defined as shown in Figure 2.3 for
the four products of Table 2.1. For example, Product3 is composed by applying feature
LINE to feature COLOR as can be seen in its feature expression. The product is implemented
by the respective base modules line and color which contain the code that is always
present for these features. In addition the changes that feature LINE makes to the base
module color are woven into module color in the form of the derivative δcolor/δLINE.

[Product1] = [WIPE(LINE)] = wipe + δline/δWIPE • line

[Product2] = [LINE] = line

[Product3] = [LINE(COLOR)] = line + δcolor/δLINE • color

[Product4] = [WIPE(LINE(COLOR))] = wipe + δline/δWIPE • line+
δ2color/δLINEδWIPE • δcolor/δLINE • δcolor/δWIPE • color

Figure 2.3: Products in Feature Algebra

As can be seen the module expressions grow very fast with the number of features. A

11

CHAPTER 2. BACKGROUND AND EXAMPLE

product with n features has a feature expression consisting of n features and a module
expression consisting of 2n− 1 modules. Notice that modules are separated by operations
+ or •.

Now we have our examples set up. We know for each of our example products their
features, their module expressions and their source code. The ideal solution to the stated
problem would be to know for each piece of source code to which module it belongs and the
pieces of source code each module consists of. In practice however, it will not be possible
to isolate every module. There may be modules for which their source code could not be
distinguished, for example because two modules never exist without each other.

12

Chapter 3

Traceability Mining Algorithm

In this section we present an algorithm for tracing products’ features in their source code.
The algorithm expects as input a number of products with their corresponding feature sets
and code. For example, Product1 with features LINE and WIPE. This product consists of
only two features as its feature expression WIPE(LINE) shows. The corresponding module
expression however consists of three modules: the base modules line and wipe and the
derivative module δline/δWIPE. Each of these modules consists of its own code (if any).
The algorithm then computes what code belongs to which modules.

3.1 Basic Insight

The general idea behind this algorithm is the observation that products that have features
in common will also have code in common and vice versa. A product is defined as a tuple
where the first element is its feature set, accessed via product.f, and the second element
is the set of code it contains, accessed via product.c:

product = (featureset, codeset)

Note that it is not sufficient to just look at a product’s features as the above example
shows, because the interactions between features, which are exactly the derivatives, would
be left out. So instead of looking at products’ features in their feature expressions we look
at the modules in their module expressions.

The modules that two input products have in common are then associated with the
code these same two products have in common. Assume Product1 and Product2 as
input. Product2 consists of only one module, which is the base module line. The code
these two products have in common is therefore associated with the base module line.
The remaining code in Product1 is left for the base module wipe and the derivative
δline/δWIPE.

The basic concept behind this is to treat products as associations between modules
and code. We define an association to be a tuple where the first element is the set of

13

CHAPTER 3. TRACEABILITY MINING ALGORITHM

modules and the second element is the set of code:

association = (moduleset, codeset)

We access an association’s module set via association.m and its codeset via association.c.
For Product1 and Product2 these associations initially are:

association1 = a1 = ({line, wipe, δline/δWIPE} , {c1, c2, c3, c4, c5, c7, c8})

association2 = a2 = ({line} , {c1, c2, c3, c4, c5, c7})

Associations are then intersected by respectively intersecting their module sets and
their code sets (see Figure 3.1). By doing so, it is possible to obtain new associations that
are added to the list or alter existing associations. For example, after intersecting these
two associations the set of associations is:

association′
1 = a′

1 = (a1.m \ a2.m, a1.c \ a2.c) = ({wipe, δline/δWIPE} , {c8})

association′
2 = a′

2 = (a2.m \ a1.m, a2.c \ a1.c) = ({} , {})

association3 = a3 = (a1.m ∩ a2.m, a1.c ∩ a2.c) = ({line} , {c1, c2, c3, c4, c5, c7})

The existing associations are altered by removing the elements in the intersection
from their modules and code. The intersection is added as new association3. For
example, code c8 which corresponds to method wipe in class Canvas (see Figure 2.2)
is now associated with modules wipe and δline/δWIPE in association a′

1 and code c1

which corresponds to field startPoint in class Line (see Figure 2.2) is associated with
the module line in association a3 as displayed in Figure 3.1. This intersection process is
repeated as new product sets are integrated. At the end, every feature and every piece
of code appear exactly once. This means that a piece of code can only belong to a single
module. Therefore our algorithm rests on the following assumption:

Unique Trace Assumption. A piece of code is unique to a module, that is, it does
not trace to multiple modules.

3.2 From Features to Modules

The algorithm starts with just the features of each product, so it needs to calculate the
modules. A product with a set of x features has a module expression with 2x−1 modules.
The modules are obtained by building the powerset of the set of features without the
empty set: moduleset = P(featureset.sel)\{∅}. For Product1:

moduleset = P({LINE, WIPE})\{∅} = {{LINE}, {WIPE}, {LINE, WIPE}}

Sets with exactly one feature represent the base modules and sets with more than

14

3.3. DEALING WITH CODE REMOVAL

wipe

δline/δWIPE

line

line wipe

δline/
δWIPE

line

a1.m a2.m a'1.m a'2.m

a3.m

m
o
d
u
l
e
s
e
t
s

[WIPE(LINE)] [LINE]

c1
c2 c3 c4
c5 c7 c8

c8

c1
c2 c3 c4
c5 c7

c1
c2 c3
c4 c5
c7

a1.c a2.c a'1.c a'2.c

a3.c

c
o
d
e
s
e
t
s

Product1 Product2

Figure 3.1: Intersection of Product 1 and Product 2

one feature (e.g. {LINE, WIPE}) represent the derivatives. There is no order in a set, so
δline/δWIPE has to be equal to δwipe/δLINE in order for this to be legitimate. For our
algorithm it does not matter in what order the features are added, it is only important to
know whether two features interact or not, so we can easily assume that is the case.

{LINE, WIPE} = δline/δWIPE = δwipe/δLINE

3.3 Dealing with Code Removal

An assumption for this approach so far is that code can only be added. Modules are
not allowed to remove code. So we have to find another way to model such effect. As-
sume we have a base module line which adds some pieces of code {c1, c2, c3, c4, c5, c7}
to a program. Then we add the feature COLOR, and therefore the modules color and
δline/δCOLOR, to the program. Module color adds some code just as module δline/δCOLOR
does. But δline/δCOLOR also removes code c4 (the old constructor) from the program.
At this point the question arises whether code c4 was part of the base module line to
begin with. If it is not always present when the module line is present, then it is obviously
not a part of it. But where else would it belong?

This is actually exactly what happens with the examples Product2 and Product3.
Their intersection is shown in Figure 3.2. One can see, that code c4 has no corresponding
modules. The intersection of the modules at that point is empty.

Indeed, in a situation like this the code could be left over without any modules to

15

CHAPTER 3. TRACEABILITY MINING ALGORITHM

c1
c2 c3 c5
c6 c7 c9

c6
c9

c1
c2 c3 c4
c5 c7

c1
c2 c3
c5 c7 c4

line

color/δLINE

color

line color

δcolor/
δLINE

line

[LINE(COLOR)] [LINE]
Product3 Product2

m
o
d
u
l
e
s
e
t
s

c
o
d
e
s
e
t
s

Figure 3.2: Intersection of Product 3 and Product 2

associate it with. It also should be noted, that this problem only applies to derivatives, as
base modules could not remove code from a module other than itself, which would make
no sense.

3.3.1 Shared and Unique Code for Derivatives

The first idea was to distinguish between shared and unique code for derivatives, but that
approach left us with some problems.

If a derivative of two features δline/δCOLOR removes code c4 from module line,
wouldn’t it be the same as to say that said code has never been part of module line

to begin with, and instead the derivatives of line with any other feature but COLOR add
this same code? δline/δCOLOR does not remove code c4, but δline/δWIPE, δline/δRECT,
... all add this code. This would mean, that the relation between modules and code is
no longer a 1:n relation but an n:n relation. One piece of code can now belong to sev-
eral different modules. We call these code pieces “shared”. Other code that is only part
of one module is called “unique”. But does this really solve our problem? Take a look
at our Product4 with features {LINE, WIPE, COLOR}. This product contains the deriva-
tive δline/δWIPE as well as the derivative δline/δCOLOR. The code c4 would be part of
δline/δWIPE and should therefore be present in the product, but it is not. Because truly it
depends on the presence (or absence) of δline/δCOLOR whether c4 is present or not. The
“removal” aspect of δline/δCOLOR binds stronger than the “addition” of δline/δWIPE.
And this is a behaviour that we do not really want. So this approach was discarded as
well. Nonetheless, such an approach might be suitable for getting rid of our unique trace

16

3.3. DEALING WITH CODE REMOVAL

assumption as part of our future work.

3.3.2 Negative Features

Instead of having a derivative remove a piece of code c4 we would rather have another
derivative add this same piece of code. But it does not fit into any of our derivatives we
have so far. So we introduce negative features. For every feature F there is now also its
negation ¬F. This leaves us with many new derivatives to work with. We can now associate
c4 with the derivative δline/δ¬COLOR. So instead of having δline/δCOLOR remove c4 we
are now having δline/δ¬COLOR add c4. We have yet to define what exactly this means
though and how we want to interpret such modules containing negative features. For
example, δline/δ¬COLOR could be interpreted as the derivatives of line and anything that
is not color, but that is not what we want. Such an interpretation would just be an
abbreviation for a list of other derivatives. It could also be interpreted as a synonym for
the one derivative of line and all features except color. But this is also not what we want.
We want δline/δ¬COLOR to be its own module, with its own unique code, that does not
have anything to do with other modules. And that is exactly how we interpret and use
these modules.

With negative features, the feature and module expressions of our products now look
different (see Figure 3.3). Each feature expression now contains every feature in the
feature list exactly once, either positive or negative. Therefore each product consists of
2N − 1 modules now, where N is the number of features in the whole feature list (not just
the features that are implemented by the product as before). Modules that contain only
negative features/modules can be discarded. Negative features/modules only make sense
as a derivative with at least one positive feature/module.

[Product1] = [¬COLOR(WIPE(LINE))] = (¬color) + δwipe/δ¬COLOR • wipe+
δ2line/δWIPEδ¬COLOR • δline/δ¬COLOR • δline/δWIPE • line

[Product2] = [¬WIPE(¬COLOR(LINE))] = (¬wipe + δ¬color/δ¬WIPE • ¬color)+
δ2line/δ¬WIPEδ¬COLOR • δline/δ¬COLOR • δline/δ¬WIPE • line

[Product3] = [¬WIPE(LINE(COLOR))] = (¬wipe) + δline/δ¬WIPE • line+
δ2color/δLINEδ¬WIPE • δcolor/δLINE • δcolor/δ¬WIPE • color

[Product4] = [WIPE(LINE(COLOR))] = wipe + δline/δWIPE • line+
δ2color/δLINEδWIPE • δcolor/δLINE • δcolor/δWIPE • color

Figure 3.3: Products in Feature Algebra with negative Features

For example, taking a closer look at Product3 in Figure 3.3. The feature expression now
contains one more feature, namely ¬WIPE. It is now explicit that the feature WIPE is not
implemented by this product. This also reflects in the corresponding module expression.

17

CHAPTER 3. TRACEABILITY MINING ALGORITHM

The first module ¬wipe in parenthesis can be omitted as it is negative and does not interact
with any positive features or modules. The second module δline/δ¬WIPE however makes
sense, as the implementation of the positive feature LINE can be influenced by feature
WIPE not being present. In this case the base module line contains code that is always
present if feature LINE is present. In addition, the module δline/δ¬WIPE adds code that
is specific to the implementation of feature LINE if feature WIPE is not present.

3.4 Algorithm Pseudo-Code

The following helper functions are used in the algorithm:

• NOT(featureset): Negates all features contained in the set. For example:
NOT ({LINE, WIPE}) = {¬LINE,¬WIPE}.

• POW(featureset): Generates the powerset of the set (without the empty set and
without modules consisting only of negative features/modules). This basically gen-
erates the modules for a set of features. For example:
POW({LINE,¬WIPE}) = {{LINE}, {LINE,¬WIPE}}.

The first part of the algorithm prepares all the input products for processing by con-
verting them into initial associations. Each of these associations obtains its code from
the corresponding product. The modules are calculated as the powerset of the union of
the features of the product and the negated version of the features not contained in the
product. The second part of the algorithm does the actual processing. One initial as-
sociation after the other is processed and new associations are added to the final list of
associations to be returned. The algorithm is shown in Algorithm 1. Some optimizations
like not adding empty associations or merging associations that contain modules but no
code are not shown to keep it simple.

Assume Product1 and Product2 as input for this algorithm. From line 5 to 14 the
initial associations and data structures are prepared as follows:

association1 =

({line, wipe, δline/δWIPE, δline/δ¬COLOR, δwipe/δ¬COLOR, δ2line/δWIPEδ¬COLOR} ,

{c1, c2, c3, c4, c5, c7, c8})

association2 =

({line, δline/δ¬WIPE, δline/δ¬COLOR, δ2line/δ¬WIPEδ¬COLOR} ,

{c1, c2, c3, c4, c5, c7})

init assocs = {association1, association2}

associations = {}

18

3.4. ALGORITHM PSEUDO-CODE

We start with an empty set associations to be returned by the algorithm and add
associations as we iterate over init assocs at line 16. Each initial association is inter-
sected with every association in the associations set. We start with association1. As
associations is still empty there are no associations to intersect it with, the loop at line
19 is not entered. The remainder, which is equal to association1, is added to the set as
it is at lines 33 and 34.

remainder = result1 = association11

associations = {result1}

The next association to be processed is association2. It is intersected with result1

from line 20 to 31, as it is now in the associations set resulting in the following new
associations:

result1 = ({wipe, δline/δWIPE, δwipe/δ¬COLOR, δ2line/δWIPEδ¬COLOR} , {c8})

remainder = result2 = ({δline/δ¬WIPE, δ2line/δ¬WIPEδ¬COLOR} , {})

intersection = result3 = ({line, δline/δ¬COLOR} , {c1, c2, c3, c4, c5, c7})

result1 is altered (at lines 29 and 30) and remainder and intersection are added
as new results (at lines 33 and 34).

associations = {result1, result2, result3}

As there are no more initial associations the algorithm is done and the associations

set is returned as result. It contains all the associations that could be extracted. At
this point every module and every piece of code appear exactly in one association, no
matter in how many of the input products they appeared. Modules appearing together in
one association could not be separated from each other. This means one can now look up
which code pieces implement which modules by looking at the association that contains the
module of interest and the associated code. However, if the association contains more than
that one module then it may also contain additional code implementing other modules.
As these modules could not be separated, their code could not be separated either.

1resultx and associationx are auxiliary variables to explain the algorithm, they do not appear in the
code.

19

CHAPTER 3. TRACEABILITY MINING ALGORITHM

Algorithm 1 Traceability Mining Algorithm

Input: A List of Products (products),1

A List of all Features (FL)2

Output: A List of Associations (associations)3

4

{convert products into initial associations}5

init assocs := {}6

for p in products begin7

association := (8

POW (p.f.sel ∪ NOT (FL \ p.f.sel)),9

p.c10

)11

init assocs := init assocs ∪ {association}12

end13

associations := {}14

{iteratively process initial associations}15

for a in init assocs begin16

remainder := (a.m, a.c)17

new assocs := {}18

for a2 in associations begin19

intersection := (20

remainder.m ∩ a2.m,21

remainder.c ∩ a2.c22

)23

remainder := (24

remainder.m \ a2.m,25

remainder.c \ a2.c26

)27

{alter existing association}28

a2.m := a2.m \ intersection.m29

a2.c := a2.c \ intersection.c30

new assocs := new assocs ∪ {intersection}31

end32

associations := associations ∪ new assocs ∪ {remainder}33

end34

return associations35

20

Chapter 4

Experimental Setting

4.1 Workflow

An overview of the implemented system is shown in Figure 4.1. We now describe each of
the steps it consists of.

Parser

Product Line

Feature Model Code Templates

Generator

DPL

VOD

Traceability
Mining

F
1

C
1

P
1

F
2

C
2

F
n

C
n

...

P
2

P
n...

output (associations)

Validator

original methods, fields and features
(products, FL)

equal yes/no

1

2

3

5

4

Program
Variants

ArgoUML

Figure 4.1: System Overview

21

CHAPTER 4. EXPERIMENTAL SETTING

4.1.1 Step 1: Product Line and Feature Model.

It should be noted that to the best of our knowledge there are only very few publicly
available software repositories from which evolved program variants could be mined. Thus,
in order to emulate more product variants to evaluate our approach, for some of our case
studies we took existing product lines and generated products according to their feature
models. The generated products are then used as input for our algorithm to see how well
it performs.

4.1.2 Step 2: Templates and Generator.

This part of the system sets up the testing environment. We need it to generate products
(the Java source files) from a product line so we can use them as input. For that purpose
we have the whole source code of a product line in the form of templates where each piece
of code is guarded with certain features. The templates are parsed by the code generator
using the Apache Velocity template engine [ASF] or the JavaPP [Kropf], depending on
the product line. Code Listing 4.2 shows an excerpt from the Velocity template file for
the class Canvas. Line 2 is only included in the product if feature LINE is selected.

1 #if ($LINE)

2 protected List <Line > lines = new LinkedList <Line >();

3 #end

Figure 4.2: Template snippet of class Line

Figure 4.3 shows how code that corresponds to a first order derivative module is
guarded in the template, namely with a conjunction of features (AND).

1 #if ($F1 && $F2)

2 ...

3 #end

Figure 4.3: Template snippet for code that belongs to derivative δF1/δF2

Code that is guarded as shown in Figure 4.4 with a disjunction of features (OR) violates
the unique trace assumption, as it traces to each of the features.

1 #if ($F1 || $F2)

2 ...

3 #end

Figure 4.4: Template snippet for code that violates the unique trace assumption

4.1.3 Step 3: Parser.

For every given product used as input, the parser reads the features from a text file and
extracts all the code elements from the Java source files using the Java Compiler API

22

4.2. IMPLEMENTATION

[Richard]. The extracted code is on the granularity of class methods and fields.

4.1.4 Step 4: Traceability Mining.

This is the core of our approach. The extracted code and features are fed into the algorithm
as well as into the validator for later verification. The algorithm computes associations
between modules and source code (fields and methods) as output.

4.1.5 Step 5: Validator.

The validator receives the original products as well as the output from the algorithm as
input. With the traceability information provided by the algorithm the validator recon-
structs products with the same features as the original products. The reconstruction is
done for each input product separately by taking the features it implements and gen-
erating the code elements as the union of the code elements of the output associations
corresponding to these features:

P ′ = Reconstruct(P.f, associations)

where P ′ is the reconstructed product and P is the corresponding original product.
As final step, each reconstructed products code elements are compared to the original
product’s code elements.

4.2 Implementation

The complete framework is implemented in Java using Eclipse as IDE. In this section the
implementation of the framework is shown using UML diagrams.

4.2.1 Data Structures

The source code of program variants is represented by the abstract class Code of which
several different concrete implementations exist, for example one for methods and one for
fields (Figure 4.5). Every instance has a clazz it belongs to, additionally fields have a
type and a name whereas a method is uniquely identified with its signature. The next
step would be to also represent statements within methods. They could be described with
the signature of the method they belong to and its position within the method (because for
statements the order matters). Generally it does not matter what information is stored
about code pieces and how it is stored as long as it is possible to uniquely identify a
piece of code and code pieces that are meant to be different can be distinguished. We do
this by means of the methods hashCode and equals. This is important if we later want
to use more advanced clone detection techniques where for example two methods should
be considered equal even though they have a different signature. In such cases only a

23

CHAPTER 4. EXPERIMENTAL SETTING

new subclass of Code has to be added that takes that into account while the rest of the
framework is not affected at all.

Code

#clazz: String

+hashCode(): int
+equals(obj:Object): boolean

Field

-name: String

-type: String

+hashCode(): int

+equals(obj:Object): boolean

Method

-signature: String

+hashCode(): int

+equals(obj:Object): boolean

Figure 4.5: UML Class Diagram for Code

The next thing that has to be represented are the features of program variants. They
are a simple class Feature with two fields for name and description (Figure 4.6). A
subclass NegFeature of Feature exists that represents a negative feature.

Feature

-name: String

-description: String

NegFeature

Figure 4.6: UML Class Diagram for Feature

Since we never work with just one feature or one piece of code but with sets on which
we have to perform different actions we have our own Set data structure that helps us do
that (Figure 4.7). It is a generic data structure that extends the class HashSet from the
Java standard library [Oracle, a,b]. A Set can do the standard set operations unification,
intersection and difference with another set. In addition it can build the powerset of a
set which we need for our algorithm to generate modules out of features. A module is
then simply represented as a set of features, and a module set therefore is a set of sets of
features.

24

4.2. IMPLEMENTATION

Set

+intersect(s:Set<T>): void

+unify(s:Set<T>): void

+diff(s:Set<T>): void

+powerSet(): Set<Set<T>>

T:Type

Set<Code>
CodeSet

<<Bind>>

<Code>

Set<Feature>
FeatureSet

<<Bind>>

<Feature>

Set<Set<Feature>>
ModuleSet

<<Bind>>

<Set<Feature>>

contains

*

1

Code Feature

contains

*

1

contains

*

1

HashSet
T:Type

Figure 4.7: UML Class Diagram for Set

4.2.2 Framework

The framework is built in such a way that different algorithms can be implemented and
used without having to change the whole system. Therefore an abstract class Algorithm

exists that is the superclass of every implemented algorithm (Figure 4.8). Every algo-
rithm has to provide the method evaluate that returns a list of associations. The class
Association contains a code set and a module set. The algorithm presented in the previ-
ous chapter is implemented in the class MainAlgorithm. It expects as input the product
variants, the complete list of features and the complete list of code pieces.

What is left is to put all this together. That is done in the class ProductLine (Figure
4.9). The method parseFromFile reads a previously serialized product line and returns it.
With the method parseFromDir a folder containing a number of products can be parsed
into a product line.

The file structure of a product line on the file system for the parser to be able to read
it must be as follows:

25

CHAPTER 4. EXPERIMENTAL SETTING

Algorithm

+evaluate(): List<Association>

MainAlgorithm

-products: List<Product>

-features: Set<Feature>

-code: Set<Code>

+MainAlgorithm(products:List<Product>,features:Set<Feature>,

code:Set<Code>)

+evaluate(): List<Association>

Algorithm2

+evaluate(): List<Association>

Algorithm3

+evaluate(): List<Association>

Association

+code: Set<Code>

+powerset: Set<Set<Feature>>

uses

1

*

Figure 4.8: UML Class Diagram for Algorithm

• ProductLine/

– Product1/

∗ src

∗ features.txt

– Product2/

∗ src/

∗ features.txt

– ...

The folder of the product line has to be specified. Every folder inside that folder is
parsed by the method parseProductFromDir in class Product and therefore has to be a
valid product. Every product folder must contain the file features.txt listing the features
of the product and their description separated by ”; ”, one per line (see Figure 4.10). And
the folder src must contain the Java source files including the package structure. This
folder is parsed using the class Parser that makes use of the Java Compiler API [Richard]
and returns a code set.

26

4.2. IMPLEMENTATION

ProductLine

-String: name

-products: List<Product>

-features: Set<Feature>

-code: Set<Code>

+parseFromDir(name:String,dir:File): ProductLine

+parseFromFile(f:File): ProductLine

+evaluate(): void

+addProduct(p:Product): void

+removeProduct(p:Product): void

Product

-name: String

+parseProductFromDir(dir:File): Product

+getName(): String

+Product(name:String)

contains

*

1

Set<Feature>
FeatureSet

Set<Code>
CodeSet

implements

1

1

contains

1

1

CodeSet
UtilityClass

+parseFromSource(dir:File): Set<Code>

FeatureSet
UtilityClass

+parseFromFile(f:File): Set<Feature>

Parser

+parseFromSource(dir:File): Set<Code>

uses

1

*

uses

uses

Algorithm

+evaluate(): List<Association> uses

1

1

Figure 4.9: UML Class Diagram for ProductLine

1 LINE;draw line

2 COLOR;select color

3 DPL;draw product line

Figure 4.10: Example for file features.txt from a DPL product

27

Chapter 5

Evaluation

An overview of the case studies used for evaluation is shown in Table 5.1. It is very difficult
to get hands on real world software variants that fit our scenario. Therefore for our first
two case studies we used existing SPLs from which we generated a number of variants
and treated them as if they were not derived from a product line. This is sufficient to
show the correctness of our approach. The third case study however, was taken as is
from [MobileMedia-Lancaster]. In the following we present our evaluation criteria and the
results obtained in our three case studies.

VOD ArgoUML MM
Mandatory Features 6 3 6 1

Optional Features 5 8 8 1

Possible Products 32 256 7 1

Lines of Code 5.3K+ 340K+ 5K+
Classes (*.java Files) 42 1915 50
Fields 392 4452 223
Methods 249 16676 422
Unique Code Pieces 642 21128 645
Associations (with Code) 5 26 22
Correctness [%] 100 99.4 99.6
Performance [sec] 0.9 45 1.3
Distinguishability 63.8 7.8 3060.8
1 Estimated values.

Table 5.1: Data about Case Studies

5.1 Evaluation Criteria

Based on the experimental setting, we identified three criteria for assessing our algorithm.

Definition 2. Correctness is the average percentage of code overlap between each original
input product and its corresponding reconstructed product (see Section 4 Step 5) using the
extracted traceability information.

28

5.2. CASE STUDY: VIDEO ON DEMAND (VOD)

Correctness =
1
n
∗

n∑
i=1

|Pi.c ∩ P ′
i .c|

|Pi.c ∪ P ′
i .c|

where n is the number of products used as input, Pi is an original input product and P ′
i

is the corresponding reconstructed product.
If all original products are reconstructed in this manner and the comparison shows

that they are equal then the extracted traceability information must be correct, at least
for the given products. That would mean a 100% value for this metric.

Our algorithm may only err in incorrectly assigning a code element to a module.
Consider now that there are two modules and let us assume that our algorithm incorrectly
assigns a code element to module1 although it belongs to module2. For any product that
includes both modules, this error would remain undetected because together they exhibit
the right code elements. However, for any product that contains one of the modules only,
the product would either be missing a code element or have an extra code element. Hence,
the need to assess correctness by reconstructing and comparing all products used by the
algorithm.

Definition 3. Performance is the execution time of the traceability mining algorithm, not
including the experimental setup such as the generation of products or the parsing of the
original source code.

The execution times were measured on an Intel R© CoreTM i5 Sandy Bridge with 8 GB
of memory.

Definition 4. Distinguishability is the average cardinality of all module sets whose re-
spective associations contain code and at least one module.

Distinguishability =
1
n
∗

n∑
i=1

|associationi.m|

where n is the number of associations that contain code and at least one module and
associationi is such an association.

The optimal value for this metric is 1, meaning every association containing code has
exactly one module.

The measure is important because our approach can only distinguish modules if one of
them appears in at least one product in which the other doesn’t. Consider, for example,
mandatory features that all products must have. As they always appear together and
never without each other, the corresponding modules and code cannot be distinguished.

5.2 Case Study: Video On Demand (VOD)

The Video On Demand (VOD) product line consists of simple video streaming applica-
tions. The feature model is given in Figure 5.1.

29

CHAPTER 5. EVALUATION

VOD

Pause PlayImm StartMovie

StopMovie ChangeServer Detail

QuitPlayer SelectMovieStartPlayer VRCInterface

Figure 5.1: Feature Model for VOD

We generated all possible products and used them for evaluation. The achieved correct-
ness was at 100% with a performance of 0.9 seconds. The distinguishability was at 63.8.
The lower bound for the number of modules possible in an association due to mandatory
features in this case study is at 26 − 1 = 63.

5.3 Case Study: ArgoUML-SPL

The ArgoUML-SPL is the SPL for the UML Modelling Tool ArgoUML [Couto et al., 2011,
ArgoUML-SPL]. The feature model is given in Figure 5.2.

ArgoUML

Diagrams Cognitive Logging

Class State Activity UseCase Collaboration Deployment Sequence

Figure 5.2: Feature Model for ArgoUML

Again all possible products were generated and used for the evaluation. The achieved
correctness was at 99.4%. Only 150 code pieces out of 21128 could not be associated with
the correct modules, in fact, they were not associated with any module at all, since for
these code pieces multiple traces existed, which violates the unique trace assumption (see
Section 5.5 Analysis). The distinguishability was at 7.8 modules per association containing
code with the lower bound for the number of modules in an association at 23 − 1 = 7.

30

5.4. CASE STUDY: MOBILEMEDIA (MM)

5.4 Case Study: MobileMedia (MM)

The third case study we evaluated has 7 product variants obtained from a system called
MobileMedia (MM). In contrast to the previous case studies, each variant corresponds to
an evolutionary step of the system development [MobileMedia-Lancaster]. The features
for each product were assigned manually by inferring them from the corresponding paper
[Figueiredo et al., 2008]. The number of features ranges from 6 for the smallest to 14 for
the largest product.

With all 7 product variants as input the achieved correctness was at 99.6%. Only one
piece of code could not be assigned to a module. Taking a closer look at this piece revealed
that it was accidentally left over in one of the products where it was not needed anymore.
It was correctly assigned after removing it from this product. So in a way our algorithm
pointed us at a mistake in one of the original products which we then corrected.

The distinguishability for this case study was 3060.8. This is due to the very small
subset of the possible products for this number of features used as input. Most of the
modules are higher order derivatives that don’t exist in the form of code anyways (see
Section 5.5 Analysis). Removing all modules with an order higher than 1 (no interactions
between more than 2 features) led to a distinguishability of 7.14 while having no influence
on the correctness.

5.5 Analysis

In our experiment, we found that some pieces of code could not be associated with any
module. The reason is that, generally speaking, such pieces of code appear in disjunctive
features. For example, product P1 uses piece of code c in feature A, product P2 uses the
same piece of code in feature B, while c is annotated with a condition to include it if feature
A OR feature B is implemented. Even though the two products do not share any common
feature they do share a common piece of code. Thus code c violates the assumption of a
unique trace for every piece of code, because it is added by multiple disjunctive features
and therefore would have to be traced to multiple modules.

Another reason for code not being associated with modules can be mistakes in the
input products, for example when code was not removed from products where it didn’t
belong to anymore. In a way, our algorithm points out those mistakes.

In addition to the correct modules, pieces of code were often also associated with a
large number of higher order derivatives that, if they existed (in the form of code), would
be implemented in this code, which our system cannot know. So basically our algorithm
indicates that such code can belong to any (or several) of these modules. In order to
avoid that, one could set a threshold for the maximum order that derivatives may have.
For example one could assume that in a certain product line, no more than 4 features
interact (depending on the coupling). Therefore, derivatives with an order higher than
3 could be omitted. This may drastically improve both the performance as well as the

31

CHAPTER 5. EVALUATION

distinguishability and have almost no negative impact on the correctness if the threshold
is chosen wisely. It also should be noted, that most of these derivative modules seemed to
stem from the undistinguishable mandatory features. Most of the other derivatives could
be separated and filtered out (there was no code associated with them). A possibility to
avoid that, would be to represent all the mandatory features with one single representative
feature, as they can’t be separated anyway.

In Figure 5.3 the number of modules with respect to their number of interacting fea-
tures (which is the order of the derivatives) are shown for VOD and ArgoUML. VOD
contains more higher order derivatives than ArgoUML, partially because it has more
mandatory features that cannot be distinguished. The highest order of derivatives that
would have been possible for both is 10, as both happen to have 11 features. Figure 5.4
shows the number of extracted associations after each additional product that is consid-
ered. Only roughly the first 15% of the products provide new associations (this depends
on the selected features of the products and in what order they are processed). Also the
distinguishability does not improve anymore at a certain point as can be seen in Figure
5.5, but it takes a little longer than for the associations. Additional products only yield
associations that do not contain code and therefore do not influence the distinguishabil-
ity measure and also do not increase the total number of associations because they are
grouped into one association. However, in some cases this may still be useful information
to know that a module does not contain any code. Also should be noted, that the final
value for the distinguishability and the final number of associations are reached pretty soon
whereas the runtime increases linearly over the number of products as shown in Figure
5.6.

All this shows us, that it would by far not have been necessary to generate all possible
product variants and all higher order derivatives, which would have dramatically decreased
the runtime and wouldn’t be possible in a real world scenario anyway.

MobileMedia is not included in the plots because our information about it is not
complete as we did not generate the variants ourselves.

32

5.5. ANALYSIS

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

N
um

be
ro
fD
er
iv
at
iv
e
M
od
ul
es

w
ith

th
at
O
rd
er

Order of Derivative

VOD
ArgoUML

Figure 5.3: Number of Modules per order of Derivative for ArgoUML and VOD

0

3

6

9

12

15

18

21

24

27

30

33

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

1

2

3

4

5

6

7

8

9

10

11
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

N
um
be
ro
fA
ss
oc
ia
tio
ns
fo
rA
rg
oU
M
L

N
um
be
ro
fA
ss
oc
ia
tio
ns
fo
rV
O
D

Number of added Products for ArgoUML

Number of added Products for VOD

ArgoUML
VOD

Figure 5.4: Number of Associations after each added Product for ArgoUML and VOD

33

CHAPTER 5. EVALUATION

0

200

400

600

800

1000

1200

1400

1600

1800

2000

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

200

400

600

800

1000

1200

1400

1600

1800

2000
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

D
is
tin
gu
is
ha
bi
lit
y
fo
rA
rg
oU
M
L

D
is
tin
gu
is
ha
bi
lit
y
fo
rV
O
D

Number of added Products for ArgoUML

Number of added Products for VOD

ArgoUML
VOD

Figure 5.5: Distinguishability after each added Product for ArgoUML and VOD

0

5

10

15

20

25

30

35

40

45

50

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

R
un
tim
e
fo
rA
rg
oU
M
L
[s
ec
on
ds
]

R
un
tim
e
fo
rV
O
D
[s
ec
on
ds
]

Number of added Products for ArgoUML

Number of added Products for VOD

ArgoUML
VOD

Figure 5.6: Runtime after each added Product for ArgoUML and VOD

34

Chapter 6

Related Work

Ziadi et al. present a partially automated approach to identify features from source code
of product variants in order to help migrate software product variants into a product line.
With the same goal in mind, our approach aims to extract traceability information from
product variants about which the features are already known [Ziadi et al., 2012].

In the work of Kaestner et al. they examine the impact of the optional feature problem
of product lines and survey different solutions and their trade offs [Kästner et al., 2009].

The work of Siegmund et al. aims to predict non-functional properties of SPL’s prod-
ucts by generating and measuring a small set of products and approximating each feature’s
non-functional properties [Siegmund et al., 2011]. Our approach works similarly, only that
we aim to extract each feature’s source code instead of non-functional properties.

Liebig et al. analyse software projects with regards to disciplined and undisciplined
preprocessor annotations and how undisciplined ones can be made disciplined [Liebig et al.,
2011].

Schulze et al. analyse code clones in feature-oriented programming and whether it
makes a difference if an SPL has been developed from scratch or refactored from legacy
code, as we aim to do [Schulze et al., 2010]. Also they discuss the removal of such code
clones. In [Schulze et al., 2011] they investigate the relationship between code clones and
preprocessor annotations in form of a large case study.

Ribeiro et al. provide data on preprocessor usage to show to what extent feature
dependencies occur in practice and compare Virtual Separation of Concerns and emergent
interfaces in terms of maintenance effort [Ribeiro et al., 2011]. Their work relates to ours
in that we also use preprocessors or template engines on annotated source code and we
then model such feature dependencies with derivative modules.

Neves et al. discover and analyse product line evolution scenarios by mining SVN
histories to then describe product line safe evolution templates [Neves et al., 2011].

The work of Rubin et al. aims at generating a product line out of related products
[Rubin and Chechik, 2012]. Their focus is on identifying the common and variable parts of
a software system using a model representation in order to combine them into a product
line.

35

CHAPTER 6. RELATED WORK

The work by Duszynski et al. analyses the source code of product variants based on
text lines in order to visualize commonalities and variabilities. The goal is to assess the
reuse potential in these software systems [Duszynski et al., 2011].

Koschke et al. aim to reconstruct the module view of a system using the reflexion
method and then map implementation components to the modules using clone detection
techniques [Koschke et al., 2009]. At this point our work utilises very simple mechanisms
to compare source code. We argue, that our system can also benefit from using more
sophisticated methods, like higher clone detection levels.

36

Chapter 7

Conclusions and Future Work

We introduced an algorithm to extract traceability information from feature to code in
product variants, on the level of class fields and methods, with the purpose of helping their
refactoring into software product lines. We evaluated our approach with three case studies
of different sizes and complexity. More than 99% of the code pieces were correctly assigned
in a matter of seconds, even with large products like the ones from the ArgoUML-SPL.
The remaining code pieces that could not be assigned to modules violated our unique trace
assumption. These violations were duly identified in our case studies.

As part of our future work we plan to:

• relax or eliminate the unique trace assumption to allow more accurate tracing and
handle non-assigned code pieces, for example by looking at call dependencies between
methods and field accesses (dependencies between code pieces in general),

• enhance the algorithm with static and dynamic analysis of programs. Instead of - or
in addition to - collecting the code pieces from source code they could be collected by
analyzing a program during runtime (for example by using the Java Debug Interface
(JDI) [Oracle, c]) and only include code pieces that were actually executed,

• extend the algorithm to work on granularity below method level. This would open
the possibility of leveraging advanced clone detection methods, and

• perform a more detailed evaluation of our algorithm with more case studies.

37

List of Figures

2.1 DPL Feature Model . 8
2.2 Unique Code Pieces . 9
2.3 Products in Feature Algebra . 11

3.1 Intersection of Product 1 and Product 2 . 15
3.2 Intersection of Product 3 and Product 2 . 16
3.3 Products in Feature Algebra with negative Features 17

4.1 System Overview . 21
4.2 Template snippet of class Line . 22
4.3 Template snippet for code that belongs to derivative δF1/δF2 22
4.4 Template snippet for code that violates the unique trace assumption 22
4.5 UML Class Diagram for Code . 24
4.6 UML Class Diagram for Feature . 24
4.7 UML Class Diagram for Set . 25
4.8 UML Class Diagram for Algorithm . 26
4.9 UML Class Diagram for ProductLine . 27
4.10 Example for file features.txt from a DPL product 27

5.1 Feature Model for VOD . 30
5.2 Feature Model for ArgoUML . 30
5.3 Number of Modules per Order of Derivative for ArgoUML and VOD 33
5.4 Number of Associations after each added Product for ArgoUML and VOD . 33
5.5 Distinguishability after each added Product for ArgoUML and VOD 34
5.6 Runtime after each added Product for ArgoUML and VOD 34

38

List of Tables

2.1 Feature Set Table . 9

5.1 Data about Case Studies . 28

39

Bibliography

ArgoUML-SPL. ArgoUML-SPL Project. URL http://argouml-spl.tigris.org/. (ac-
cessed July 15, 2012).

ASF. Apache Velocity Project. URL http://velocity.apache.org/. (accessed July 15,
2012).

P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. Addison-
Wesley, 2002.

M. V. Couto, M. T. Valente, and E. Figueiredo. Extracting software product lines: A case
study using conditional compilation. In T. Mens, Y. Kanellopoulos, and A. Winter,
editors, CSMR, pages 191–200. IEEE Computer Society, 2011. ISBN 978-0-7695-4343-
7.

E. Denney and U. P. Schultz, editors. Generative Programming And Component Engineer-
ing, Proceedings of the 10th International Conference on Generative Programming and
Component Engineering, GPCE 2011, Portland, Oregon, USA, October 22-24, 2011,
2011. ACM. ISBN 978-1-4503-0689-8.

S. Duszynski, J. Knodel, and M. Becker. Analyzing the source code of multiple software
variants for reuse potential. In Pinzger et al. [2011], pages 303–307. ISBN 978-1-4577-
1948-6.

E. Figueiredo, N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza, A. Garcia, S. Soares,
F. C. Ferrari, S. S. Khan, F. C. Filho, and F. Dantas. Evolving software product lines
with aspects: an empirical study on design stability. In W. Schäfer, M. B. Dwyer, and
V. Gruhn, editors, ICSE, pages 261–270. ACM, 2008. ISBN 978-1-60558-079-1.

E. N. Haslinger, R. E. Lopez-Herrejon, and A. Egyed. Reverse engineering feature models
from programs’ feature sets. In Pinzger et al. [2011], pages 308–312. ISBN 978-1-4577-
1948-6.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-oriented
domain analysis (foda) feasibility study. Technical report, Carnegie-Mellon University
Software Engineering Institute, November 1990.

40

http://argouml-spl.tigris.org/
http://velocity.apache.org/

BIBLIOGRAPHY

C. Kästner, S. Apel, S. S. ur Rahman, M. Rosenmüller, D. S. Batory, and G. Saake. On
the impact of the optional feature problem: analysis and case studies. In D. Muthig
and J. D. McGregor, editors, SPLC, volume 446 of ACM International Conference
Proceeding Series, pages 181–190. ACM, 2009.

R. Koschke, P. Frenzel, A. P. J. Breu, and K. Angstmann. Extending the reflexion method
for consolidating software variants into product lines. Software Quality Journal, 17(4):
331–366, 2009.

J. Kropf. JavaPP Project. URL http://www.slashdev.ca/javapp/. (accessed July 15,
2012).

J. Liebig, C. Kästner, and S. Apel. Analyzing the discipline of preprocessor annotations
in 30 million lines of c code. In P. Borba and S. Chiba, editors, AOSD, pages 191–202.
ACM, 2011. ISBN 978-1-4503-0605-8.

J. Liu, D. Batory, and C. Lengauer. Feature oriented refactoring of legacy applications.
In Proceedings of the 28th international conference on Software engineering, ICSE ’06,
pages 112–121, New York, NY, USA, 2006. ACM. ISBN 1-59593-375-1. doi: http://
doi.acm.org/10.1145/1134285.1134303. URL http://doi.acm.org/10.1145/1134285.

1134303.

MobileMedia-Lancaster. MobileMedia. URL http://sourceforge.net/projects/

mobilemedia/. (accessed July 15, 2012).

L. Neves, L. Teixeira, D. Sena, V. Alves, U. Kulesza, and P. Borba. Investigating the safe
evolution of software product lines. In Denney and Schultz [2011], pages 33–42. ISBN
978-1-4503-0689-8.

L. Northrop. Software Product Lines Essentials, 2008. URL http://www.sei.cmu.edu/

library/assets/spl-essentials.pdf. (accessed July 22, 2012).

Oracle. Java Technology, a. URL http://www.oracle.com/us/technologies/java/

overview/index.html. (accessed July 20, 2012).

Oracle. Java Standard Edition API Specification, b. URL http://docs.oracle.com/

javase/6/docs/api/. (accessed July 20, 2012).

Oracle. Java Platform Debugger Architecture, c. URL http://docs.oracle.com/javase/

6/docs/technotes/guides/jpda/architecture.html. (accessed July 15, 2012).

M. Pinzger, D. Poshyvanyk, and J. Buckley, editors. 18th Working Conference on Re-
verse Engineering, WCRE 2011, Limerick, Ireland, October 17-20, 2011, 2011. IEEE
Computer Society. ISBN 978-1-4577-1948-6.

41

http://www.slashdev.ca/javapp/
http://doi.acm.org/10.1145/1134285.1134303
http://doi.acm.org/10.1145/1134285.1134303
http://sourceforge.net/projects/mobilemedia/
http://sourceforge.net/projects/mobilemedia/
http://www.sei.cmu.edu/library/assets/spl-essentials.pdf
http://www.sei.cmu.edu/library/assets/spl-essentials.pdf
http://www.oracle.com/us/technologies/java/overview/index.html
http://www.oracle.com/us/technologies/java/overview/index.html
http://docs.oracle.com/javase/6/docs/api/
http://docs.oracle.com/javase/6/docs/api/
http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/architecture.html
http://docs.oracle.com/javase/6/docs/technotes/guides/jpda/architecture.html

BIBLIOGRAPHY

M. Ribeiro, F. Queiroz, P. Borba, T. Tolêdo, C. Brabrand, and S. Soares. On the impact
of feature dependencies when maintaining preprocessor-based software product lines. In
Denney and Schultz [2011], pages 23–32. ISBN 978-1-4503-0689-8.

S. Richard. Source Code Analysis Using Java 6 APIs. URL http://today.java.net/pub/

a/today/2008/04/10/source-code-analysis-using-java-6-compiler-apis.html.
(accessed July 15, 2012).

J. Rubin and M. Chechik. Combining related products into product lines. In J. de Lara
and A. Zisman, editors, FASE, volume 7212 of Lecture Notes in Computer Science,
pages 285–300. Springer, 2012. ISBN 978-3-642-28871-5.

S. Schulze, S. Apel, and C. Kästner. Code clones in feature-oriented software product
lines. In E. Visser and J. Järvi, editors, GPCE, pages 103–112. ACM, 2010. ISBN
978-1-4503-0154-1.

S. Schulze, E. Jürgens, and J. Feigenspan. Analyzing the effect of preprocessor annotations
on code clones. In SCAM, pages 115–124. IEEE, 2011. ISBN 978-1-4577-0932-6.

N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel, and S. S. Kolesnikov.
Scalable prediction of non-functional properties in software product lines. In E. S.
de Almeida, T. Kishi, C. Schwanninger, I. John, and K. Schmid, editors, SPLC, pages
160–169. IEEE, 2011. ISBN 978-1-4577-1029-2.

F. J. van d. Linden, K. Schmid, and E. Rommes. Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering. Springer, 2007.

T. Ziadi, L. Frias, M. A. A. da Silva, and M. Ziane. Feature identification from the source
code of product variants. In T. Mens, A. Cleve, and R. Ferenc, editors, CSMR, pages
417–422. IEEE, 2012. ISBN 978-1-4673-0984-4.

42

http://today.java.net/pub/a/today/2008/04/10/source-code-analysis-using-java-6-compiler-apis.html
http://today.java.net/pub/a/today/2008/04/10/source-code-analysis-using-java-6-compiler-apis.html

	Introduction
	Software Product Line (SPL)
	Goal

	Background and Example
	Example: Draw Product Line (DPL)
	Feature Model
	Feature List
	Source Code
	Feature Algebra

	Traceability Mining Algorithm
	Basic Insight
	From Features to Modules
	Dealing with Code Removal
	Shared and Unique Code for Derivatives
	Negative Features

	Algorithm Pseudo-Code

	Experimental Setting
	Workflow
	Step 1: Product Line and Feature Model.
	Step 2: Templates and Generator.
	Step 3: Parser.
	Step 4: Traceability Mining.
	Step 5: Validator.

	Implementation
	Data Structures
	Framework

	Evaluation
	Evaluation Criteria
	Case Study: Video On Demand (VOD)
	Case Study: ArgoUML-SPL
	Case Study: MobileMedia (MM)
	Analysis

	Related Work
	Conclusions and Future Work

